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151-742 Korea 

Received 19 October 1592 

Abstract. The scaling dimensions of the semi-infinite hvc-dimensional lsing model with 
smwthly inhomogeneous couplings are determined, in general, by the eigenvalues of 
a SchrBdinger-type equation. We obtain exact results for a marginal, twc-parameter 
inhomogeneity that corresponds to a supersymmehic quantum mechanical potential. 
The results are compared with predictions of conformal invariance. 

Two-dimensional Ising modek with several types of marginal inhomogeneities in semi- 
infinite and bulk geometries have been studied, including smooth inhomogeneities 
that vary with distance from a free surface 11-91 or from an internal line [IO, 111, and 
radially symmetric inhomogeneities [U, 131. The non-universality of their local critical 
behaviom near the inhomogeneities was explained using a scaling argument [14]. In 
spite of the presence of inhomogeneities, the critical properties have been studied 
in terms of the conformal invariance. Igl6i and others (see [MI) transformed the 
problem of calculating scaling dimensions into that of solving an ordinary differential 
equation. One can show (see below) that this procedure leads, in general, to a 
Schriidinger-type equation. Formulated in this way, the structure of solubility of 
the specific problem can be understood. (Here we consider only the semi-infinite 
geometry, in which the boundary condition is simpler to deal with than that in 
the bulk.) In this work we consider a marginally inhomogeneous semi-infinite 
two-dimensional Ising model (or a quantum king chain) with two free parameters, 
generalizing the work of 181. 

Let us denote by t( z )  the local deviation of the temperature variable at the 
complex coordinate z = I + iy from the criticality in inhomogeneous models in the 
continuum. Then t ( z )  on the upper half-plane (y > 0) transforms [8] as 

t (w) = [w'(z)l-Y't(z) (1) 
under the conformal transformation tu = w(z). In this work we will consider 
inhomogeneites of the form 
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where a and p are two free parameters. When p = 0, equation (2) reduces to that 
considered in [SI. With the scaling transformation w = b-lz, we find 

Hence the inhomogeneities are irrelevant, marginal, and relevant for yt < s, yt = s, 
and yt > s, respectively 1141. Under the conformal mapping w = ( N / n ) h z  [15], 
we obtain in the strip 0 < U < N 

In particular, the temperature variable of the marginally inhomogeneous Ising model 
(yt = s = 1) takes the form 

l(w)=-(acsc--pcotT)  7r XU XU 

N N 
and is homogeneous along the strip. 

In the strip geometry, the problem is equivalent in the extreme anisotropic limit 
1161 to considering the inhomogeneous quantum Jsiig chain with free b o u n d q  
condition and the Hamiltonian 

N-1 N 

H = -$ A ( ~ ) U ; U ; + ~  - +XU;. (7) 
j = I  j = 1  

Here 1 - X ( j )  is equal to t ( u  = j), and U;, U!, and U; are Pauli matrices at site j. 
The normalization is chosen so that the sound velocity IS unity for the homogeneous 
king chain (X( j )  = 1) at criticaIity 1171. 

As is well known [U], the Hamiltonian (7) can be cast into a diagonal form 

in fermion operators uk and U; with the excitation energies A, given by the solution 
of an N x N eigenvalue problem. We are interested in the finite size scaling, where 
surface scaling dimensions Ak corresponding to one-fermion excitations are given 
1151 by 

FoUowing the method in 161, we see that the difference equations satisfied by the 
eigenvectors become in the thermodynamic limit the fit-order coupled differential 
equations 
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with the boundary condition &(z  = 0) = &(+ = n)  = 0. Here W ( + )  is defined 
by 

N-m T 

Eliminating &(z) in (10) gives the equation 

for q5k(z), with 

4dz)Lo = 0 #i(z) t Yz)q5dz)Lr = 0. (13) 

The equation for &(z)  can be obtained by negating W ( z )  in (12) and (13). We 
note that the abwe derivation of (12) and (13) from (7) is applicable to any type of 
inhomogeneities described by X(j) ,  or W(z). 

Equation (12) is just the Schriidinger equation in one dimension with energy 
eigenvalues Ai. In this respect, the problem considered in 161 may be thought 
of as a free quantum particle in a three-dimensional sphere. The pair of 
equations (10) reminds us of supersymmetric quantum mechanics [19], where W ( z )  
is the supersymmetric potential and v,(z) = W ( Z ) ~  * W’(z) supersymmetric 
partner potentials. Many of the potentials for which the Schrodmger equation is 
exactly soluble have a shape-invariance property, allowing the determination of the 
spectrum and wavefunctions by algebraic means [20]. The inhomogeneity given by 
W ( z )  = a c s c z  - p c o t z  (see (6) and (11)) is an example of a shape-invariant 
potential [19]: 

V+(z;a,P) = V _ ( z ; a , p t l ) t ( P t 1 ) 2 - p z .  (14) 

But the boundary condition (13) for (12) is different from that usually considered 
in quantum mechanics, leading to different solutions for the present problems, and 
seems to prevent us from exploiting the shape-invariant property. 

Following Burkhardt and Igl6i [8], we obtain the solution to (12). There are four 
regions in (a, @)-plane which exhibit different excitation spectra. For a - p < -f 
and a t p < -1 (region I), we have 

Ak = d(-a+ 1/2+ k -  1 ) 2 - @  

A,, = 0. 

k = 1,2,. . . 
(15) 

On the other hand, for a - p < - $  and a t p > - f  (region II), 

A , = J ( p + k ) z - p z  k = O , 1 ,  ... . 
For a - p > -f and a + p > -; (region In), we have 
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while for a - P  > -; and a t P  < -$ (region IV), 

A , = d ( - / 3 + k ) 2 - P 2  k = O , l ,  ... . (18) 
Other scaling dimensions are given as sums of several Ah.  

The above results for the inhomogeneity given by (2) generalize those of 
Burkhardt and Igl6i (81 (0 = 0). In regions I and III, the spectra depend continuously 
on two parameters (a and P), which have not been considered before. Unlike the 
p = 0 case, A b  for general p are not linear in k, which would have been expected if 
A,s and their sums form conformal towers. In general we do not have a conformal 
tower-like structure, but only asymptotically for large IC. Similar phenomena have 
been observed in systems with inhomogeneities breaking the translational invariance 
along the free surface [6,7,12,13], as is the case in the present problem. In the 
appendix, the spectrum of the semi-infinite twodimensional Ising model with a 
radially symmetric marginal inhomogeneity is a n a l p d  using (12). In regions I1 and 
IV, the spectrum is independent of a, a manifestation of universality. In regions I, 11, 
and I V  (a t p < -4 or a - /3 < -&, the lowest eigenvalue A, vanishes in the 
thermodynamic limit. Thus the system exhibits a spontaneous surface magnetization 
in these regions. This can be understood in view of [8], since the temperature 
inhomogeneities near the x axis have the form t ( z  -I iy) N - 2 ( a ~ P ) / y ,  depending 
on the sign of x. 

In summary, we observe that the scaling dimensions of the inhomogeneous 
Ising models in the fiite-size scaling limit are related to the Schriidinger-type 
equation. Then using results for supersymmetric potentials we recognize which type 
of inhomogeneities lead to exactly sovable differential equations. We then obtain 
exact results for a marginal, two-parameter inhomogeneity that corresponds to a 
supersymmetric quantum potential, generalizing the work of 181. Finally we note that 
the above analysis may also be applied to the smooth inhomogeneity in the bulk. 

The author is grateful to Professor T W Burkhardt and Professor Doochul Kim for 
helpful discussions and comments on the manuscript, and thanks Temple University 
for hospitality where part of this work was done. 

Appendix 

Bariev and Peschel [12] considered the local magnetic surface exponent of the 
semi-infinite (and also bulk) two-dimensional Ising model with a radially symmetric 
marginal inhomogeneity. The general formalism developed above enables one to 
calculate the complete spectrum. With W ( x )  = CY, equation (12) becomes 

+:(*I t (Ai  - a 2 ) + k ( x )  = 0. (AV 
The boundary condition at I = 0 gives 

+,(=I = s i n ( \ / m x )  (‘43 

4i(x) + w(x)+k(x)l~=r = 4- cos 

t a s i n ( J a : - a 2 r )  =o.  

while the boundary condition at x = T requires 
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For IC = 0 this equation reproduces the expressions (18) of [12] for the local magnetic 
surface exponent @,,,(a) with the identification a = -2na. In particular, for la1 < 1 
we obtain 

Hence this system does not show a conformal tower-like structure. 
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